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Abstract— This paper rigorously computes the precise 

quantiles associated with the Maximum Likelihood 

Estimation (MLE) method for Renyi entropy applied to the 

Nakagami distribution. Additionally, it approximates the 

quantiles of the asymptotic distribution of this statistic. 

Furthermore, the thesis introduces an enhanced version of 

this statistical measure. Remarkably, even in cases 

involving small sample sizes, the proposed method provides 

a formula for determining quantiles based on the chi-

square distribution. This approach yields an exact 

distribution of statistics and reveals key characteristics of 

the MLE Renyi entropy applied to the Nakagami 

distribution. 

Keywords— Asymptotic Normality, Fisher Information, 

MLE, Nakagami Distribution, Renyi Entropy  

Introduction  

    Our research delves into the domain of Renyi entropy, 

specifically focusing on conditional Renyi entropy (Baez, 

2022).We demonstrate the validity of the chain rule for Renyi 

entropy and establish a relationship governing the rate of Renyi 

entropy (Mesfioui , Kayid, & Shrahili, 2023).This relationship 

proves instrumental in deriving the Renyi entropy rate for an 

irreducible-aperiodic Markov chain. Notably, our study reveals 

that the upper bound for Renyi entropy rate coincides with the 

Shannon entropy rate. 

    Advances in Renyi entropy have resulted in its utilization in 

various domains, including signal processing, machine 

learning, and statistical physics (Asafo-Adjei, Adam, Owusu 

Junior, Akorsu , & Arthur, 2022). The notion has been 

expanded by scholars to encompass continuous probability 

distributions, hence facilitating its utilization in situations that 

involve continuous data. Furthermore, Renyi entropy has been 

included in multivariate statistics, offering useful metrics for 

multidimensional dataset’s dependence and uncertainty 

structures. 

    The study of conditional Renyi entropy in which the 

determination of a random variable's entropy is contingent upon 

the knowing of another variable—has garnered attention in 

recent years. Applications for this extension can be found in 

fields such as pattern recognition and image processing, which 

enable a more sophisticated comprehension of the information 

contained in large, complicated data sets. 

  In the analysis of age data and issues connected to the failure 

process, several parametric models are used (Nakagami, 1960). 

It is known that ultrasound modeling is used in medical imaging 

research, particularly when photographing various types of 

tumors, such as breast tumors. NAK may also be used to 

simulate the envelopes of high-frequency seismograms. Dr 

Mamoun told me to mention that in using result in diagnosis of 

some diseases associated with aging 

   Awad and Abu Hammad’s paper (2007) made noteworthy 

contributions by investigating the distribution of the Shannon 

statistic derived from normal samples. Their research 

introduced modifications to existing statistics and provided 

exact distributions, calculated through the quantiles of the chi-

square distribution. 

    In the contemporary research landscape, Afaf's work (Al 

Sous, 2023) stands out as a pioneering effort. This research 

meticulously calculated exact quantiles for the Maximum 

Likelihood Estimation (MLE) of Shannon entropy applied to 

Nakagami distributions. The study introduced a novel version 

of the statistic, demonstrating its precision even in scenarios 

involving limited sample sizes. Through rigorous analysis and 

application of chi-square distribution quantiles, the research 

established precise formulas for quantiles of the statistic's 

distribution and illuminated key characteristics of MLE 

Shannon entropy within the context of Nakagami distribution. 

Renyi Entropy of NAK(𝒂, 𝒃) 

 We will state the Renyi entropy of the NAK distribution. 

Lemma 1 

 If  X ∼ NAK(𝑎, 𝑏), then the Renyi entropy, is given by: 

𝐻𝑅(𝑏) =
1

2(𝜉−1)
(𝑙𝑜𝑔(4𝑎𝜉) + (𝜉 + 1) 𝑙𝑜𝑔(𝑏) − 𝜉 𝑙𝑜𝑔(4𝑎) +

(2𝑎 − 1)𝜉 𝑙𝑜𝑔(𝜉) + 2𝜉 𝑙𝑜𝑔(𝛤(𝑎)) − 2𝜉 𝑙𝑜𝑔(𝛤 (
1

2
+

2𝑎−𝜉

2
))                                                 
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Proof: In order to prove this result, we observe that the PDF of 

X is given by: 

Hence,                                   [𝑓[𝑥]𝜉] =

2𝜉𝑎𝑎𝜉

𝛤(𝑎)𝜉𝑏𝑎𝜉  𝑥(2𝑎−1)𝜉
 𝑒

−(
𝑎𝑥2

𝑏
)

𝜉

 

 

Taking integration to both sides results in: 

∫ 𝑓(𝑥)𝜉 𝑑𝑥 = (2)−1+𝜉(𝑎)𝑎𝜉+
1
2

(−2𝑎𝜉+𝜉−1)
(𝑏)−𝑎𝜉+

1
2

(2𝑎𝜉−𝜉+1)
 

(𝜉)
1
2

(−1+𝜉−2𝑎𝜉)
𝛤(𝑎)−𝜉𝛤 ((𝑎 −

1

2
) 𝜉 +

1

2
) 

This immediately gives the desired result. 

𝐻𝑅(𝑏) =
1

2(𝜉 − 1)
((𝑙𝑜𝑔(4𝑎𝜉)) + (𝜉 + 1) (𝑙𝑜𝑔(𝑏)) − (𝜉 𝑙𝑜𝑔(4𝑎))

+ (2𝑎 − 1)(𝜉 𝑙𝑜𝑔(𝜉)) + (2𝜉 𝑙𝑜𝑔(𝛤(𝑎)))

+ (2𝜉 log (
2𝑎 − 𝜉 + 1

2
))) 

 

  MLE for Renyi Entropy of NAK Distribution 

It is well known that the MLE for  b based on random sample 

X1, X2 , . . . , Xn from NAK (𝑎, 𝑏) is 

b̂ =
∑ 𝑥i

2n
i=1

n
 

we get:  

𝐻𝑅(�̂�) =
1

2(𝜉 − 1)
((𝑙𝑜𝑔(4𝑎𝜉)) + (𝜉 + 1)(𝑙𝑜𝑔(�̂�))

− (𝜉 𝑙𝑜𝑔(4𝑎)) + (2𝑎 − 1)(𝜉 𝑙𝑜𝑔(𝜉))

+ (2𝜉 𝑙𝑜𝑔(𝛤(𝑎)))

+ (2𝜉 log (
2𝑎 − 𝜉 + 1

2
))) 

 

𝐻𝑅(�̂�) − 𝐻𝑅(𝑏) =
(𝜉 + 1) 𝑙𝑜𝑔(�̂�) − (𝜉 + 1) 𝑙𝑜𝑔(𝑏)

2(𝜉 − 1)
 

      Where,                        
2α

β
∑ 𝑥i

2n
i=1 : G (2a, 2, √

𝑏

𝑎
) ≡ G(an, 2) ≡

𝒳2
⌈2αn⌉ 

Lemma  2  Properties of this estimator  

1) E (𝐻𝑅(�̂�)) = 𝜓(𝑎𝑛) + log(2) + 𝐻𝑅(𝑏) 

2) Var(log 𝐻𝑅(�̂�)) = 𝜓′(𝑎𝑛) 

Proof:  

1) E (𝐻𝑅(�̂�)) = 𝐻𝑅(𝑏) +
(𝜉+1)

2(𝜉−1)
𝐸(log( 𝜒(2𝑛𝑎)

2 )) +

(𝜉+1)(log(2𝑛𝑎))

2(𝜉−1)
 

We want to find 𝐸 log(𝜒(2𝑎𝑛)
2 ) 

 Now,                                       𝑋: 𝜒(2𝑛𝑎)
2 ≡ 𝐺(𝑛𝑎, 2) 

So,    

𝐸(log(𝑋)) = 𝜓(𝑎𝑛) + log(2) 

E (𝐻𝑅(�̂�)) = 𝐻𝑅(𝑏) +
(𝜉+1)

2(𝜉−1)
𝐸(log(2𝑛𝑎) +

(𝜉+1)

2(𝜉−1)
[(𝜓(𝑎𝑛)) + (log(2))]                                

                    = 𝐻𝑅(𝑏) + 𝜓(𝑎𝑛) + (log(2)) 

2) 𝑉𝑎𝑟(𝑙𝑜𝑔 𝐻𝑅(�̂�) =
(𝜉+1)

2(𝜉−1)
 𝑉𝑎𝑟(log 𝜒(2𝑛𝑎)

2 ) 

Now,                                      𝑋: 𝜒(2𝑛𝑎)
2 ≡ 𝐺(𝑛𝑎, 2) 

   So,    

𝑉𝑎𝑟(log(𝑋)) =
(𝜉 + 1)

2(𝜉 − 1)
( 𝜓′(𝑎𝑛)) 

Exact Distribution of 𝐇(�̂�)when 𝜶 known 

Lemma  3 The random variable 

 𝑊 =
√𝑛(𝐻(�̂�)−𝐻(𝑏))

√𝜎2(𝑏)
 has a Gumbel distribution of type one, 

where 𝜎2(𝑏) =
𝑡2

𝛪(𝑏)
 ; 𝑡 =

𝜕𝐻(𝑏)

𝜕𝑏
 ;  (Pardo L. , 2006) 

Proof: 

                    H(b̂) − H(b) =
(𝜉+1)

2(𝜉−1)
((𝑙𝑜𝑔 (

∑ 𝑥i
2n

i=1

n
)) −

(𝑙𝑜𝑔(𝑏))). 

                                           =
(𝜉+1)

2(𝜉−1)
((𝑙𝑜𝑔 (

2𝑎 ∑ 𝑥i
2n

i=1

2an
)) − (𝑙𝑜𝑔(𝑏))). 

    =
(𝜉+1)

2(𝜉−1)
((𝑙𝑜𝑔(2𝑎 ∑ 𝑥i

2n
i=1 )) − (log(2𝑎)) − (log(𝑛)) − (𝑙𝑜𝑔(𝑏))).  

              =
(𝜉+1)

2(𝜉−1)
((𝑙𝑜𝑔 (

2𝑎 ∑ 𝑥i
2n

i=1

b
)) − (𝑙𝑜𝑔(2𝑎𝑛))). 

we have: 

 t =
∂H(b)

∂b
=  

(𝜁+1)

2(𝜁−1)𝑏
∙ 

and from,                                                    

I(b) =
a

b2
∙ 

 It is clear from tables that: 

1) The Nakagami approximation is acceptable for values 

in the middle of the distribution. 

2) In the tails of the distribution, the approximated 

quantiles are larger than those of the exact distribution. 

It also seems that this is valid even for large values of 

n.  



3)  Since testing and construction of confidence interval 

depend on quantiles near the tails, we conclude that 

the asymptotic distribution is not applicable for small 

sample.  

 

Table1: Percentiles of Renyi entropy statistic based 

on sample form 𝑁𝐾(𝑏, 𝑏), 𝑏 = 5, number of 

simulated samples ni = 1000 

TABLE I.   

 0.005 0.01 0.025 0.05 0.1 0.25 0.75 0.9 0.95 0.97 

1 -8.15 -8.16 -5.55 -5.51 -4.53 -2.31 0.98 1.97 2.32 2.41 

2 -9.57 -9.57 -6.52 -5.85 -5.24 -2.42 0.82 1.96 2.83 3.10 

3 -6.97 -6.97 -4.38 -4.04 -2.84 -1.33 1.80 2.52 3.27 3.7 

4 -8.65 -8.65 -4.61 -3.44 -1.71 -0.52 1.99 3.11 3.81 4.60 

5 -6.33 -6.33 -4.45 -3.21 -2.13 -0.94 1.74 2.71 3.22 3.81 

6 -4.10 -4.1 -2.78 -2.51 -1.70 -0.42 2.02 2.95 3.65 4.36 

7 -5.56 -5.56 -3.6 -3.17 -2.52 -0.54 2.81 3.80 4.48 5.14 

8 -4.94 -4.94 -3.79 -3.09 -1.65 -0.13 2.40 3.91 4.29 4.62 

9 -5.42 -5.42 -2.85 -2.31 -1.17 0.42 3.28 4.35 4.68 5.51 

10 -6.12 -6.12 -2.76 -2.67 -1.86 0.23 2.57 4.06 4.75 5.18 

11 -5.18 -5.18 -2.33 -1.54 -1.02 0.52 3.30 4.60 5.27 5.39 

12 -2.57 -2.57 -2.15 -2.05 -1.38 -0.02 3.20 4.26 5.66 6.47 

13 -2.66 -2.66 -1.46 -1.16 -0.43 0.88 3.39 4.72 5.43 5.77 

14 -4.35 -4.35 -2.46 -1.34 -0.51 0.23 3.20 4.72 5.59 5.81 

15 -5.14 -5.14 -2.57 -1.91 -0.76 0.58 3.60 4.55 5.68 6.36 

16 -3.12 -3.12 -1.93 -1.45 -0.41 0.73 3.80 5.35 5.88 6.50 

17 -2.93 -2.93 -1.91 -1.63 -0.49 0.96 4.37 5.78 6.57 7.13 

18 -4.13 -4.13 -1.18 -1.04 -0.57 1.70 3.96 5.06 5.61 5.88 

19 -2.55 -2.55 -2.21 -1.69 -0.16 0.70 3.73 5.19 5.94 6.60 

20 -1.85 -1.85 -0.62 0 0.54 1.51 4.42 5.55 5.78 6.70 

21 -4.86 -4.86 -2.34 -1.60 -0.49 1.12 4.11 4.94 5.72 7.30 

22 -2.66 -2.66 -1.61 -0.74 -0.16 1.72 4.74 5.72 6.13 6.85 

23 -3.76 -3.76 -1.99 -1.88 -0.63 0.88 4.30 5.48 5.89 6.37 

24 -2.61 -2.61 -1.61 -0.82 0.48 1.74 4.37 5.52 6.53 6.90 

25 -2.80 -2.80 -0.95 -0.78 -0.34 1.82 4.54 5.32 5.98 6.70 

26 -1.76 -1.76 -1.40 -0.91 0.05 1.54 4.66 5.52 6.40 7.78 

27 -3.70 -3.7 -2.16 -1.36 -0.17 1.74 5.04 6.57 7.08 8.78 

28 -1.47 -1.47 -0.57 0.35 1.13 2.11 5.10 6.50 6.85 7.72 

29 -2.23 -2.23 -0.77 -0.12 0.19 1.39 4.79 6.32 6.75 7.40 

30 -3.12 -3.12 -0.87 -0.42 0.88 2.09 5.12 7.01 7.49 8.52 
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