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Abstract. Reconfigurable Intelligent Surface (RIS) technology is the main can-
didate for 5G-beyond. However, the increased number of passive components 
within the structure increases the number of links to be estimated. As a result, 
existing RIS-assisted channel estimation schemes are more error-prone than tra-
ditional communications, thus confounding a very large pilot load. Many ap-
proaches have been used to overcome this obstacle. This paper reviews different 
options studied ranging from RIS configuration optimization, channel feature ex-
ploitation, deep learning to blind estimation types with the assistance of adaptive 
mMIMO smart antennas. 

Keywords: Reconfigurable intelligent surface, Pilots overhead, Channel esti-
mation. 

1 Introduction 

After the 5G wireless network became standardized, it was clear that no single enabling 
technology could meet all future requirements [1]. Researchers then began to explore 
other alternatives, gradually moving away from the comfort zone of 5G-focused solu-
tions. At this point, the reconfigurable intelligent surface (RIS) remains the undisputed 
counterweight to the needs of future applications. It is a passive device capable of con-
trolling and modifying the propagation of electromagnetic waves. It can dynamically 
adjust the direction, phase, and amplitude of signals to improve coverage and reduce 
interference. 

However, Pilots overhead is a major obstacle in RIS-assisted systems. Each RIS el-
ement must be configured and estimated individually, which results in an increase in the 
time and resources required for channel estimation. This reduces spectral and energy 
efficiency, limiting the overall system performance, especially in large-scale environ-
ments. Much work has been addressed to overcome this annoyance with a wide range of 
approaches, some more attractive than others, this end among many others. 
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2 Contributions 

Specifically, many art reviews have been published to provide detailed advances on re-
configurable smart surface-assisted wireless communications. Wu et al. [2] provided an 
overview of wireless communication systems incorporating RIS, examining the operat-
ing principles, hardware architecture, and potential applications. Zheng et al. [3] focused 
on new research directions and innovative architectural designs associated with RIS. The 
works of Pan et al. [4] and Jian et al. [5] explored channel estimation approaches and 
propagation models specific to RIS-assisted systems. Liang et al. [6] analyzed RIS-based 
wireless communications, differentiating the roles that smart surfaces can play as infor-
mation transmitters or reflectors. Noh et al. [7] and Chen et al. [8] investigated the prop-
erties of RIS in high frequency bands. Swindlehurst et al. [9] synthesized RIS system 
models by structuring their analysis around structured and unstructured configurations, 
while integrating the contributions of machine learning algorithms into their study. 

Despite the progress, challenges remain, such as generalizing approaches to diverse 
environments or reducing computational complexity. Driver overhead is one cause. This 
focused review helps evaluate solutions that could make RIS systems more practical and 
efficient by centralizing current knowledge. Many approaches have been proposed to 
mitigate the overhead, including the use of sparse channel estimation techniques, ma-
chine learning algorithms, or tensor-based methods. The goal is to synthesize these 
works, compare their advantages and limitations, and guide researchers toward the most 
promising solutions. 

We plan the rest of the paper in these steps: First, we highlight the advantages and 
limitations of conventional algorithms and then develop techniques based on optimiza-
tion and deep learning before tackling the so-called blind and semi-blind approaches. 
The last step will be dedicated to identifying gaps and proposing directions. 

3 Pilots Overhead In Reconfigurable Intelligent Surface 
Assisted Systems 

Popular beamforming methods for RIS typically involve full channel state information 
(CSI). However, the computational cost of channel acquisition increases exponentially 
with the number of surface elements that are typically passive and therefore have no 
signal processing capability. 

 
Fig. 1. Model of wireless communication system assisted by reconfigurable intelligent surface 
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3.1 Conventional Algorithms For Estimation Of RIS-assisted Systems 

In the generic channel estimation method, the transmitter transmits the pilot sequence 
and the receiver receives the signal sequence after reflection by the RIS to recover the 
channel matrix in the constructed channel model. LS/MMSE estimation [10]-[14] is a 
classical method to find solutions of these models, which has been widely used in pilot-
based RIS-assisted systems. These models are simple and lead to straightforward algo-
rithms, but the required training overhead is very large and may make these approaches 
impractical. The estimator of the minimal linear average quadratic error (LMMSE) has 
also been studied in the context of reconfigurable intelligent surfaces (RIS) for the esti-
mation of relative channels. However, its implementation remains complex, because it 
is based on a precise knowledge of the covariance of the relative canals. This constraint 
is aggravated by the nature of the distributions of these channels, often characterized by 
heavy tails, making their statistical modeling and their estimate particularly difficult. 

Methods to reduce training overhead, e.g. based on clustering of RIS elements or 
exploiting the common BS-RIS channel between users, have been proposed, but larger 
reductions are possible when channels are sparse if parametric or geometric channel 
models are used instead. These approaches seek to compensate for the difficulties linked 
to traditional statistical modeling while adapting to the complex nature of RIS systems. 

3.2 Optimization And Adaptability Of RIS Systems  

Optimization techniques are essential in RIS-assisted systems especially since the effi-
ciency of channel estimation can be improved by implementing a reasonable transmis-
sion protocol. To estimate cascaded channels with reduced training overhead, Liu et al. 
[15] model the channel estimation in a RIS-assisted multi-user MIMO system as a matrix 
factorization problem based on a specific calibration. By exploiting the slowly varying 
properties of channel components and the sparse structure of hidden channels, they in-
troduce a novel message-passing algorithm to solve the cascaded channel factorization. 
Building on this approach, Chen et al. [16] exploit the block sparsity of rows and col-
umns to capture the correlation between users, thus enabling joint channel recovery for 
multiple users. This method significantly reduces the pilot overhead compared to con-
ventional techniques such as least squares (LS) or multiple measurement vector (MMV) 
models. 

To reduce the pilot overhead, the sparsity and correlation of mmWave multi-user 
have been exploited in [17] with an orthogonal matching search (OMP) based method 
to estimate the angles of departure (AoD) among users and in [18] where partial infor-
mation of a single user can be estimated in the first time, and then the channel between 
BS and RIS is estimated at a large time scale. Furthermore, a RIS-assisted mmWave 
channel estimation method based on Re’nyi entropy function combined with compres-
sive sensing methods has been proposed in [19]. Re’nyi entropy function is used as a 
sparse promotion regularizer with the aim of reducing the pilot overhead. Chung et al. 
[20] explored the estimation of angular information based on position data. A channel 
estimation approach based on atomic norm minimization (ANM) has also been proposed 
to effectively reduce the pilot overhead.   

Moreover, many studies converge on the superiority of tensor-based signal pro-
cessing, which fully exploit the multidimensional structure of transmitted and received 
signals as well as communication channels. For example, the work of [21] shows that 
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received signals can be accurately modeled using parallel factor tensor (PARAFAC) 
models, integrating specific temporal structures for pilots and phase adjustments of RIS.  

Methods called two-phase or three-phase ON/OFF have also been developed. The 
authors propose an N-phase channel estimation strategy, where the direct and reflected 
channels associated with a typical user are estimated in the first phase. In the following, 
the CSI associated with the other users is estimated. However, the implementation of 
ON/OFF switching is costly because each RIS element must be controlled separately in 
terms of amplitude. The authors of [22] proposed an always-ON RIS model that can be 
used with orthogonal reflection coefficients derived from the DFT matrix.  

Separate channel estimation can be easily achieved by installing active elements with 
transceiver signal capability on the RIS. An architecture was proposed in [23]. A CS 
method was used to perform channel reconstruction for the sampled channels detected 
by a few elements and then a deep learning-based solution was developed, in which the 
RIS learns to interact with the incident signal based on the channels of the active ele-
ments, which represent the environment state and the locations of the transmitters and 
receivers. To reduce the significant pilot overhead, Schroeder et al. [24] proposed a two-
stage channel estimation scheme based on ANM. The proposed channel estimation re-
quires fewer active RIS elements and only one-way training, which provides better esti-
mation performance. 

On the other hand, novel methods for generating training sets of RIS reflection coef-
ficients are introduced, showing significant performance advantages in terms of com-
plexity, pilot overhead, and signaling requirements. The work in [25] explores solutions 
based on a pre-designed codebook for RIS reflection models, reducing the overhead, 
without relying on complex model assumptions. The studies in [26] propose a low-com-
plexity framework for RIS-assisted (MIMO) channel estimation. The approach consists 
of partitioning the channel training phase and pre-designing the RIS reflection coeffi-
cients to estimate the effective overlapping channel. The results demonstrate the com-
petitive advantage over traditional methods, especially in fast-changing channels with 
limited coherence time. The table below summarizes a little the approaches mentioned 
based on methods of optimizing system assisted by RIS. 

Table 1. Summary of approaches to optimization of RIS systems 

References Approaches discussed  Results 

[15] 
Problem in the form of matrix 
factorization Reducing Overhead by Message Passing 

[16] Capturing correlation between users Reduced overhead compared to LS or multiple 
measurement vector (MMV) models 

[17] Orthogonal Matching Pursuit (OMP) Reduced pilots overhead by leveraging 
mmWave multi-user rarity and correlation 

[18] Partial information from a single user 
then generalized on a large scale Saving pilot signals, remarkable performance 

[19] Re’nyi entropy function / CS Sparse promotion regulation, Reduced pilots 
overload 

[20] Atomic Norm Minimization (ANM) Effective reduction of driver overload 

[21] PARAFAC integrating specific 
temporal structures 

Accurate signal modeling, RIS phase adjust-
ments 
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References Approaches discussed  Results 

[22] Always ON with coefficients taken 
from the DFT matrix 

Outline of the disadvantages of the ON/OFF 
method in particular the driver overload 

[23] Active Element Integration - CS / 
Deep learning 

RIS interaction with incident signal, perfor-
mance improvement 

[24] ANM with fewer active elements Better estimation performance 

[25] Pre-designed codebook for RIS 
thinking models 

Significant performance in terms of complex-
ity, pilots overhead and signaling requirements 

[26] Pre-designed reflection coefficient 
according to the learning phase Effective reduction of pilots overload 

Other optimization approaches in the existing literature include successive convex ap-
proximation [27], [28], the minorization-maximization algorithm [29], and the alternat-
ing direction method of multipliers [30] (ADMM). 

3.3 Reducing Computational Overhead Using Machine Learning 

In the literature, the learning capability of neural networks has been used to estimate the 
full channel from the partial pilot channel information, it can also be combined with 
image processing techniques to imagine the RIS channel information as two images. 
They are presented by different network architectures: CNN, Graph Attention Network 
(GANet), DNN, Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) 
and more. 

 
Fig. 2. Neural network-assisted RIS system estimation model 

In [31], the authors introduced an offline-trained deep neural network (DNN)-based 
model to capture the implicit relationship between the measured receiver (Rx) coordi-
nates and the optimal configuration of reconfigurable intelligent surfaces (RIS). To over-
come the limitations of labeled data collection in supervised approaches, the authors of 
[32] adopted an unsupervised learning method. They proposed an innovative RIS beam-
forming neural network (RISBFNN) architecture, which is capable of predicting the op-
timal phase shift configuration with a loss function defined by the inverse of the trans-
mission rate. The authors of [33] propose a learning scheme called learning phase shift 
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neural network (LPSNet), to efficiently find the solution to the spectral efficiency max-
imization problem in RIS-assisted MIMO systems. 

Combined refinement of neural networks with classical tuning to maximize overall 
performance can be found in the literature. For the purpose of optimal estimation, Ginige 
et al. [34] implement an untrained deep neural network (DNN) based on deep image 
network (DIP) to denoise the effective channel of the system obtained from conventional 
least squares (LS) estimation and acquire a more accurate estimation using orthogonal 
frequency division multiplexing (OFDM) while favoring reduced pilot usage. Kundu et 
al. [35] considered the initial conventional LS channel matrix as a noisy image and pro-
posed a CNN-based image denoising network (DnCNN) to clean this image and produce 
improved RIS channel estimates. The work in [36] unfolds the AMP algorithm into a 
learnable network, where the shrinkage function in the AMP algorithm is replaced by 
the denoising convolutional neural network. Assuming that the arrival and departure an-
gle bases fall exactly on the discrete grid during computation, Mao et al. [37] merged 
deep learning into the CS-OMP algorithm to achieve improved performance. 

Resource-based task allocation can also be optimal. To reduce the training overhead 
in time-varying dynamic channels, Xu et al. [38] proposed a two-part channel subsam-
pling and neural network approach. The first part describes the RIS dynamic channel 
using neural ordinary differential equation (ODE) to improve the time series reconstruc-
tion performance of the recurrent neural network (RNN), and the last part uses ODE to 
modify the relationship between different data layers in the network and improve the 
time series estimation performance, which is better suited for time-varying channel esti-
mation scenarios. Jin et al. [39] proposed an approach to reshape the channel matrix into 
a two-dimensional image, using a single-scale enhanced deep super-resolution (EDSR) 
neural network and a multi-scale deep super-resolution (MDSR) neural network to re-
cover the channel using sparse channel properties. The approach can increase generali-
zation capability and reduce hardware complexity. 

In [40], Xu et al. designed an LSTM-based neural network framework for the de-
composition process and channel prediction process by modifying the connection layer 
based on the nonlinear mapping relationship between input and output, thereby reducing 
the complexity. A trainable deep learning-based Proximal Gradient Descent Network 
(TPGD-Net) for mmWave channel estimation was presented in [41]. Simulation results 
on the Saleh-Valenzuela channel model and DeepMIMO dataset demonstrate its effec-
tiveness compared with state-of-the-art mmWave channel estimators. 

Another learning alternative, deep reinforcement learning (DRL), which uses online 
collected data to train the model, has gained momentum in various RIS-assisted wireless 
network scenarios. Usually, authors introduced a DRL approach to study the joint design 
of the transmission beamforming matrix at the BS and the RIS phase shift configuration 
for a significant improvement of MIMO or MISO channel estimation. The work in [42] 
exploits the advances in deep reinforcement learning (DRL) to determine the optimal 
RIS beamforming vector. Their solutions can approach the upper bound obtained with 
perfect channel state information (CSI). However, the introduction of active elements at 
the RIS incurs additional hardware costs and power consumption. In [43], the authors 
proposed a deep deterministic policy gradient (DDPG) based algorithm. In the applied 
model, the successive transmission beamforming and RIS phase shifting have been co-
operatively optimized with less complexity. Using the work of [42] where the authors 
applied a deep RL algorithm to maximize the achievable communication throughput in 
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the RIS wireless network, the proposed algorithm can avoid the data collection phase 
during the training period, which reduces the computation time and thus less pilot load. 
The table below summarizes the approaches discussed using deep learning methods to 
compensate for the overload of pilots in the systems assisted by RIS. 

Table 2. Summary of approaches using deep learning against pilot overload in RIS systems 

References Approaches discussed  Results 

[32] RISBFNN Prédiction de la configuration optimale des dépha-
sages 

[33] Learning Phase Shift Neural 
Network (LPSNet) 

Solution to the problem of maximizing spectral effi-
ciency 

[34] DNN DIP LS Good performance, reduced drivers 

[35] LS-DnCNN Increased performance, reduced driver overhead 

[38] EDO-RNN-EDO Optimizing Results in Time-Varying Channel Esti-
mation Scenarios 

[39] EDSR+MDSR on a two-
dimensional image 

Generalization capability and reduction of hardware 
complexity 

[40] LSTM for channel 
decomposition and prediction Reduction of calculation time 

[41] TPGD-Net Increased efficiency over state-of-the-art mmWave 
channel estimators 

[42] DRL Superior performance with active element constraints 

[43] DDPG Cooperative optimization with less complexity 

The approaches discussed above use either estimated channel information or measured 
pilots at the transmitter (Tx) or base station (BS) to predict the optimal beamforming 
matrix for the RIS. Alternatively, they can learn the optimal RIS configuration based 
only on the receiver (Rx) location coordinates, without explicitly considering the prop-
agation environment between the Tx and Rx. 

4 Blind Estimation Of RIS Systems, An Alternative 
Worth A Detour 

Unlike most existing approaches on RIS-assisted systems, which first estimate channels 
and then optimize phase shifts, the focus of this approach is to explore the wireless en-
vironment by extracting statistical features directly from random samples of the received 
signal power. This new method simply requires a polynomial number of random samples 
to provide a quadratic increase in the signal-to-noise ratio in the number of reflecting 
elements without CSI. 

The authors of [44] proposed a novel strategy called blind beamforming that coordi-
nates multiple RISs by means of statistics without knowing the CSI, exploring only a 
small part of the entire phase shift solution space to extract the key statistical quantity 
for beamforming. In [45], a DNN-assisted spatial modulation concept, called DeepSM, 
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was proposed. The authors designed a pair of DNN structures to replace the data-driven 
channel estimator and detector. The conventional DNN relied on pilot symbols to esti-
mate the channel and then performed data detection in a data-driven manner. In contrast, 
DeepSM operated in a more realistic time-varying channel, which updated the CSI in 
each time slot before detecting the data. Therefore, it can perform well even in a highly 
dynamic communication environment. Aware of the subtle problem of blind beamform-
ing algorithms RFOCUS [46] and CSM (Conditional Sample Mean) [47], Lai et al. [48] 
suggest a blind adaptive beamforming algorithm by clustering that works regardless of 
the strength of the direct channel and is scalable to multiple users. 

Mainly these studies focus on exploiting statistical correlations within observed data. 
They neglect the data generation process and the underlying causal relationships be-
tween the environment and RIS configurations. The estimation problem studied in [49] 
is formulated as a dataset between multiple RISs, as learning agents, in heterogeneous 
environments. By modeling two neural networks and using Invariant Risk Minimization 
(IRM) [50] combined with Federated Learning Games (FL) [51], they solved the RIS 
configuration problem by learning invariant causal representations across multiple envi-
ronments and then predicting the phases.  

However, in these approaches the received user power faces some mystery. This 
mystery can be solved by using partial training i.e. data and pilot signal assisted approach 
rather than a totally blind approach. The literature [52] has proposed a conventional full-
depth CNN framework, via the use of data and pilot symbols constructed in a very spe-
cific manner. In order to recover the bits in the time domain OFDM signal without rely-
ing on any discrete Fourier transform, the authors designed a CNN network named 
DeepRx with multiple sublayers, which is capable of solving the channel change adap-
tation problem in a highly dynamic environment. Alwakeel et al. [53] proposed a semi-
blind approach which improves the achievable throughput by reducing the channel esti-
mation overhead. Since the data symbols are generally not orthogonal, they propose to 
estimate the direct channels (User-BS) using a conventional pilot transmission tech-
nique. Then by exploiting the characteristics of the direct and reflected signals via quasi-
orthogonal channels (sufficiently long data symbols from different users), they managed 
to improve the spectral efficiency by 80% compared to systems based only on pilots. A 
two-stage semi-blind tensor-based Khatri-Rao factorization and Kronecker factorization 
(KAKF) receiver was proposed in [54] to jointly estimate the channel and transmission 
symbol matrices without the need of a dedicated pilot training stage. By exploiting the 
low-rank property of mmWave, a two-stage semi-blind fitting algorithm based on a gen-
eralized PARATUCK tensor model (derived from the combination of PARAFAC and 
Tucker tensor decompositions) of the RIS reflected signals was proposed in [55]. Simu-
lation results demonstrate superior performance, in terms of normalized mean square 
error and symbol error rate, as well as lower computational complexity, compared to 
recently proposed parallel factor analysis-based receivers. The table below summarizes 
the approaches cited which use the data instead of the pilots or in part, in the systems 
assisted by RIS. 

Table 3. Summary of so-called blind and semi-blind approaches 

References Approaches discussed Results 

[45] 
DNN-assisted spatial modulation, 
called DeepSM 

Regular channel update in a highly dynamic com-
munication environment 
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References Approaches discussed Results 

[48] Blind Adaptive Beamforming 
Algorithm 

Highly efficient and easily scalable to multiple us-
ers 

[49] IRM/FL Games Optimal phase prediction, solving the RIS configu-
ration problem 

[52] CNN named DeepRx Fixed the problem of adaptation to channel change 

[54] Khatri-Rao factorization and 
Kronecker factorization (KAKF) Cooperative optimization with less complexity 

[55] PARATUCK tensor model Higher performance, lower symbol error rate, and 
lower computational complexity 

5 Conclusion 

Deep learning methods that use parameters to tune the pilot overload problem can out-
perform conventional methods under good convergence. In most studies, the ability to 
tune a large number of network parameters is stronger in models built using some prior 
knowledge of the communication channel. However, the pilot-assisted approach in-
volves devoting part of the spectral resources to transmitting known pilot information, 
rather than real data, which compromises the efficiency of data transmission and spectral 
utilization. 

Despite these advantages, blind estimation has challenges, including slower conver-
gence of algorithms and increased sensitivity to noise or imperfection of assumptions. 
Several studies have shown that a phase predictor trained with geometric properties of 
environments performs better than a representation learner followed by a predictor. As 
the complexity of the problem increases, the advantage of deep learning becomes more 
obvious, and the conventional solution integrating a deep learning solution has broad 
development prospects. There is no doubt that recent advances in machine learning (deep 
learning, tensor-based algorithms) will contribute to improving the performance of these 
approaches. 
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