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Abstract— Pediatric Bone Marrow Transplantation (BMT) 
is widely used as a treatment innovation that can treat certain 
types of cancers and hematologic disorders in children. 
Nevertheless, it is quite worrying that despite all the scientific 
breakthroughs in medical field, the survival rates for post BMT 
pediatric patients are still very low. This work aims to improve 
the probabilistic forecast of pediatric BMT survival rates by 
applying AI and ML approaches. Having a large dataset of 
demographic and clinical characteristics of pediatric patients, 
we subjected the data to an elaborate data cleaning process. This 
included handling of missing records, converting categorical 
variables into dummy and dealing with an uneven distribution 
of the survival status using the Borderline SMOTE method. 
Then we used mutual information for selecting the features, 
which helped in the elimination of the non-relevant 
characteristics. The selected features along with the full features 
dataset were fed to the ML models namely Random Forest, 
XGBoost, Logistic Regression, Decision Tree and Support 
Vector Classifier through Hyperparameter optimization. The 
results of this study showed that the XGBoost model was the 
most efficient in identifying the survival status of the pediatric 
patients after BMT. By facilitating more accurate predictions of 
survival outcomes, we can equip healthcare professionals with 
the insights necessary to make more informed clinical decisions, 
thereby potentially enhancing survival rates for children 
undergoing BMT. 

Keywords—Machine learning, Pediatric BMT, Borderline 
SMOTE, Mutual information, Hyperparameter Optimization, 
XGBoost 

I. INTRODUCTION 

A. Background and Motivation

Cancer is a prominent cause of death globally,
characterized by the uncontrolled growth and spread of 
abnormal cells. Individuals of various ages, including 
children, might be affected. Pediatric cancer, although 
uncommon, poses distinct diagnostic and therapy issues. 
Leukemias are the most common childhood cancers [1].  

Any interruption in bone marrow function can have 
catastrophic consequences, leading to illnesses such as 
anemia, leukemia, and other immune deficiency disorders 
[2]. Bone Marrow Transplantation (BMT) has become a 
source of hope for people affected by some types of cancer 
including leukemia and many other severe diseases, 
especially for children. BMT means transplanting of 
unhealthy or infected bone marrow cells with healthy stem 
cells which then mature and perform the roles of bone 
marrow [3]. Before the operation, the patient is prescribed 
huge chemotherapy dosages and radiation therapy so that 
possible metastases are eradicated. After that, the bone 
marrow, which was extracted and transplanted, is utilized to 
produce good blood cells. These fresh healthy cells will also 
inhibit the cancer cells, which are already present, from 

continuing to multiply. BMTs are used with good effect in 
cancer and non-cancer patients with diseases like 
adrenoleukodystrophy, Hodgkin’s disease, acute leukemia, 
aplastic anemia, multiple myeloma and neuroblastoma [4].  

About 50,000 hematopoietic stem cell transplants 
(HSCTs), also referred as BMT, annually are carried out 
globally as a therapy [5]. With the recent development in 
medical research, BMT has proven to be a life-saving 
procedure for many pediatric patients. But the prognosis and 
survival rates can vary considerably. This is so because 
several factors may come into play like the type of the 
disease, general condition of the patient, type of transplant, 
and compatibility between the donor and the recipient among 
others. Currently available prognostic methods, although 
valuable, often struggle to incorporate the multifaceted and 
dynamic nature of the many variables involved.  

In the recent past, AI and ML applications in the various 
sectors including the healthcare sectors have become notable. 
This is due to a few factors which include heightened 
availability and accessibility of health care information, 
improved ability in computation and continuous development 
of advanced algorithms. At present these technologies are 
used in almost any sphere of healthcare diagnostics, 
prognosis or prediction, patient’s monitoring and treatment 
planning [6].  

B. Research Contribution

This paper will cover the process of establishing and
evaluating an ML model that aims at determining the survival 
rates of pediatric-BMT patients. The goal of using AI in this 
case is to help clinicians make better choices and save more 
young lives through increasing the patients’ survival rates 
and their quality of life. 

The salient contributions of our study are: 

a) To work with the dataset, we first cleaned,
transformed, and then decoded as per the systematic
method to deal with the missing values and further
check the quality of the data to make it ready for
further analysis.

b) Maximized quantitative analysis allowed us to
identify major factors affecting the results of bone
marrow transplantation and discuss the major
factors that define bone marrow transplantation
effectiveness.

c) Recognizing the potential impact of class imbalance
on model performance, we applied Borderline
SMOTE for oversampling, enhancing the model's
ability to generalize and improving its performance
on minority class predictions.
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d) Using mutual information, we ranked the features 
based on their relevance to the target variable, 
providing insights into the factors most predictive of 
survival in pediatric BMT. 

e) We incorporated Hyperparameter Optimization 
(HPO) through the grid search cross-validation into 
our methodology, tuning the parameters of our 
machine learning models to optimize their 
performance.  

f) We evaluated various machine learning models on 
their predictive performance, thereby identifying the 
most optimal models for use in predictive healthcare 
in the context of pediatric treatment.  

II. LITERATURE REVIEW 

HSCT is a crucial and frequently employed technique in 
many situations in childhood cancer and other diseases. This 
transplant can treat 85% of children afflicted with very 
serious blood disorders in middle income countries as low 
risk and have long term effect on health associated quality of 
life in the children and is cost effective solution. [7].  

Despite its therapeutic potential, HSCT is associated with 
numerous complications and challenges. These include viral 
infections due to the patient's immunosuppression, as well as 
complications related to the high dose chemotherapy 
regimen. Acute graft versus host disease (GvHD) is the most 
significant toxicity of allogeneic HSCT that can involve the 
liver, the skin and the gastrointestinal tract, both the upper 
and lower segments [8]. A study aimed to design and test 
index model based on machine learning for the risk 
stratification of aGVHD in adult HSCT recipients in Japan. 
Specific to the analysis, models were built using the ADTree 
machine learning algorithm, and the rates of aGVHD were 
distinctly separated by ordinal levels of the ADTree scores 
[9].  

A Bayesian network model was created to determine the 
best first dose of intravenous CsA for the pediatric patients 
undergoing HSCT. The model passed the 10-fold cross-
validation and prediction using the data from the last 2 years. 
The model displayed reasonable prediction accuracy with an 
average area of 0.804 under the ROC curve [10]. In many 
cases, the outcome determination, or the need to predict 
survival time is challenging because of the interactions 
between biological, genetic, and environmental aspects. An 
exploratory study establishes findings on the survival time 
estimation of children with Acute Lymphoblastic Leukemia 
applying three algorithms. The study established that support 
vector regression and multiple linear regression techniques 
were useful in the computation with an average cross-
validated root adjusted mean error of less than 0. 3. It was 
again concluded that all the prediction models have passed 
the 70% of the classification accuracy wherein each patient is 
classified between short survivor and long survivor [11].  

Using an effectual classification model, a study assesses 
the children’s survival who receive BMT. On the basis of the 
Chi-square feature selection method, the first 11 features 
were extracted from the given dataset. To enhance the 
accuracy of prediction, hyperparameter tuning employing the 
grid search cross-validation methodology was applied having 
a prediction accuracy of 94.73% [12]. Another study was 
performed on the same dataset using machine learning 
classifiers to predict patients survival state after BMT using 
two feature selection methods: Principal Component 

Analysis (PCA) and Fuzzy Discernibility Matrix (FDM). Top 
results were presented by ADA Boost, with an accuracy score 
of 95.23% [13]. The Mud Ring Algorithm (MRA) was 
proposed as a novel feature selection method for survival 
prediction. Experiments on 13 real datasets showed that the 
MRA outdid other techniques with an accuracy of up to 
82.6% for test cases [14].  

Another research study was also done using the same 
dataset and the features were selected through Salp swarm 
optimization, Harris Hawks optimization, and mutual 
information. LIME, SHAP, and ELI5 were combined with 
QLattice to improve the interpretability of the model. The 
four most significant characteristics were relapse, the age of 
the donor, the age of the recipient, and platelet recovery time 
[15]. These encouraging results indicate the capacity of AI in 
aiding the comprehension and enhancement of BMT 
prognosis in children. 

III. DATA PREPROCESSING 

A. Dataset Description 

This study utilizes the 'Bone Marrow Transplant: 
Children' dataset, sourced from the UCI Machine Learning  
Repository [16]. The data involves pediatric patients with 
different hematologic malignancies and non-malignant 
disorders who received unmanipulated allogeneic unrelated 
donor HSCT. The dataset is also multivariate, and it contains 
187 records and 39 variables. 

B. Data  Exploration  

Exploratory data analysis is essentially the first step 
concerning investigation to be conducted on data to identify 
patterns, outliers, relations, hypothesis and also to check 
validity of assumptions by using summary statistics and 
graphics. If the features have many missing values, 
imputation cannot be performed as the models prove to be 
undependable. “Extensive_chronic_GvHD” was excluded 
because most of its values were missing. The median of the 
other numerical variables was used in their stead. Due to the 
significant impact of outliers on the missing values in this 
study, we did not use mean to replace them. Categorical 
variables that were missing were substituted with their 
corresponding modes [15].  

Most ML models cannot deal with categorical variables. 
Even if they can like Decision Tree, it is more practical to 
convert categorical variables to numerical variables, they can 
decrease memory usage and potentially speed up the 
computations. One-hot encoding is used in this research as it 
effectively handles nominal categorical variables by avoiding 
the introduction of any arbitrary order. The StandardScaler 
method was used to normalize the dataset for analysis. It 
maintains the shape of the original distribution and is more 
resilient to outliers, ensuring that the data is appropriately 
scaled and less influenced by extreme values. This provides 
a robust foundation for the subsequent stages of the analysis.  

We used box plots to perform a summary analysis on the 
numerical variables in our dataset. They provide information 
about the patterns of dispersion of the data and potential data 
anomalies. In Figure 1, the graph reveals that rates of 
mortality in BMT patients could rise owing to the age of the 
donor. Furthermore, one gets the impression that only a few 
donor patients are within the ages of 30- 40 years. It can be 
observed that pediatric patients under 10 are most likely to 
survive after transplantation. The likelihood of survival 
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declines as the rise of recipient’s body mass. It can be inferred 
that survivability rate is directly proportionality to CD3+ and 
CD34+ cell dosage. The CD3+ cell to CD34+ cell ratio had a 
negligible impact on survivability. Interestingly, we found 
that mortality is positively associated with longer platelet 
recovery time. 

From Figure 2, representing bar charts for some 
categorical variables, it can be inferred that patients had a 
higher chance of survival when the donor age was under 35. 
If the hematopoietic stem cell donor had CMV infection prior 
to transplantation, the recipient is more likely to survive. A 
higher level of compatibility of antigens (HLA match) results 
in a better likelihood that the recipient will survive. The result 
also implies that ALL (acute lymphoblastic leukemia) was 
present in most individuals who had BMT. BMT has a lower 
success rate when used to treat lymphoma patients. Most 
pediatric patients with this illness died following the 
transplant. As can be observed, death was higher in high-risk 
patients. The fact that so few individuals underwent a second 
consecutive bone marrow transplant after relapse is clear.  

C. Data Balancing using Borderline SMOTE Algorithm 

Our dataset, employed for prognosticating pediatric Bone 
Marrow Transplant survival, exhibits a minor imbalance with 
102 survival instances and 85 non-survival instances. Such an 
imbalance could potentially bias our AI model towards over-
predicting survival. Considering the potential data loss with 
under-sampling, we opted for oversampling to address data 
imbalance in our study. The Synthetic Minority 
Oversampling Technique (SMOTE) was considered as a 
potential solution, given its demonstrated superiority over 
traditional oversampling methods, which replicate existing 
minority class instances and often causes overfitting. 
SMOTE employs the K Nearest Neighbor (KNN) algorithm 
to synthesize new instances within the minority class, 
creating unique instances until the class distribution is 
balanced. However, SMOTE is not without limitations. The 
algorithm may result in the 'line bridge' problem when 
synthesizing records from the minority class that are 
proximate to the majority class instances. This issue could 
potentially lead to misclassification, compromising the 

model's accuracy. To circumvent this challenge, we 
leveraged the Borderline SMOTE variant in this study. 
Borderline-SMOTE refines the original SMOTE algorithm 
by prioritizing the resampling of instances proximal to both 
the majority and minority classes when synthesizing new data 
points. This approach ensures a more precise class balance 
and mitigates the risk of misclassification [17].  

In the Borderline-SMOTE algorithm: 

𝑃𝐶 =  {p1, p2, …, ppnum},   𝑁𝐶 =  {n1, n2, …, nnnum} 

where 𝑝𝑛𝑢𝑚 and 𝑛𝑛𝑢𝑚 are the total number of minority 
and majority instances. 

In Table 1, Step 1 identifies the samples in the minority 
class that belong to noisy, borderline, and safe regions based 
on their nearest neighbors. The instances in DANGER are the 
borderline data of the minority class PC, and we can see that 
𝐷𝐴𝑁𝐺𝐸𝑅 ⊆ 𝑃𝐶 . We set 𝐷𝐴𝑁𝐺𝐸𝑅 = { p' 1, p' 2, …., p' 
dnum}, 0 ≤   𝑑𝑛𝑢𝑚 ≤  𝑝𝑛𝑢𝑚. Step 2 calculates the nearest 
neighbors of the instances in the DANGER set, representing 
the borderline samples. Step 3 generates synthetic minority 
examples by combining scaled difference vectors between 
borderline samples and their nearest neighbors.  The number 
of synthetic instances depends upon dnum (the number of 
examples in the DANGER set) and s (the oversampling 
amount, an integer between 1 and k). Multiplying these 
values gives us the total count of synthetic examples (s × 
dnum). By drawing out more instances that fall closer to the 
line from the minority borderline cases to similar instances of 
the minority class, then it is possible to extend the minority 
class and balance the classes [18]. 

D. Feature Selection using Mutual Information 

The selection of features is a crucial preprocessing step in 
machine learning. This entails removing the least important 
features from the initial feature set and keeping only the most 
important ones. Many feature selection algorithms emphasize 
improving important information while reducing redundant 
information. To further reduce redundant information in 
assessment measures, we propose a feature selection method 
that makes use of mutual information [19].

TABLE I. BORDERLINE-SMOTE ALGORITHM 

Algorithm: Borderline-SMOTE 

Input: Training set TS, Minority class PC, Majority class NC, Nearest neighbors count m and k, Oversampling amount s 

Output: Synthetic minority class samples 

Initialization: Initialize the algorithm with the given input parameters. 

1.  

For each sample pi in the minority class PC: 

• Calculate the m nearest neighbors of pi from the training set TS. 

• Denote the count of the majority examples in the m nearest neighbors as m'. 

• If𝑚′ =  𝑚, ignore pi as it belongs to a noisy region. 

• If 𝑚/2 ≤  𝑚′ <  𝑚, add pi to the DANGER set, indicating that it is in a borderline region. 

• If 0 ≤  𝑚′ <  𝑚/2, ignore pi as it is considered safe. 

2.  
For every instance in DANGER set: 

• Compute the k nearest neighbors of the examples from the minority class PC. 

3.  

For each pi' in the DANGER set: 

• Choose s nearest neighbors from the k nearest neighbors of pi' in the minority class PC. 

• Compute the difference vector difj  between pi' and each selected neighbor. 

• Generate s new synthetic minority examples by adding a scaled difference vector to pi', where the scaling factor is a random 

number between 0 and 1. 

synthj = pi' +rj × difj (where 𝑗 =  1, 2, … . , 𝑠) 
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Fig. 1. Box plots of few numeric variables (0 - alive, 1 - dead).

 

 

Bar plots of few categorical variables (0 - alive, 1 - dead).

Mutual information is calculated between two variables 
that captures the number of bits required on average to 
optimally predict one variable given the value of the other 
variable known. Formally, the mutual information between 
two random variables W and Z is as follows. 

𝐼(𝑊 ;  𝑍)  =  𝐻(𝑊) –  𝐻(𝑊 | 𝑍) 

where I (W; Z) is the mutual information for W and Z, 
H(W) is the entropy for W and H (W | Z) is the conditional 
entropy for W given Z. The mutual information between two 
discrete variable W and Z with w1, 𝑤2, … , 𝑤𝑛  and 
𝑧1, 𝑧2, … , 𝑧𝑚 distinct values is as follows. 

𝐼(𝑊 ;  𝑍) =  ∑ 𝑝(𝑤𝑖 , 𝑧𝑖) 𝑙𝑜𝑔
𝑝(𝑤𝑖 , 𝑧𝑖)

𝑝(𝑤𝑖)𝑝(𝑧𝑖)𝑖,𝑗
 

where 𝑝(𝑤𝑖) and 𝑝(𝑧𝑖) is the marginal probability mass 
function of W and Z [20]. This approach was implemented in 
Python using the ‘mutual-info-classif’ package. 

TABLE II. SELECTED FEATURES USING MUTUAL INFORMATION 

10 
features 

'survival_time', 'PLT_recovery', 'donor_CMV_present', 

'HLA_match_10/10', 'risk_group_high', 

'HLA_group_1_three_diffs', 'acute_GvHD_III_IV_yes', 

'donor_age_below_35_yes', 'recipient_ABO_A', 
'recipient_age_below_10_no' 

IV. PROPOSED METHODOLOGY 

A. Model Selection  

The dataset is split into an 8:2 ratio, implying that 80% of 
it is utilized for training and the rest of 20% is used for testing. 
This assures that the models can be evaluated on unseen data 
to assess their predictive performance. 

This research study is divided into eight experiments, 
each representing a unique combination of feature selection, 
SMOTE (Synthetic Minority Over-sampling Technique), and 
Hyperparameter Optimization (HPO). The experiments are 
categorized into two groups: A and B. Group A Experiments 
A (1-3) use the full feature set, while Group B Experiments 
B (1-3) use a selected subset of features we extracted using 
mutual information. Each experiment within the groups is 
further differentiated based on the use of SMOTE and HPO. 
The cross validation of the training dataset was done using 
Grid Search Cross Validation (GSCV) to get the models’ 
optimum hyper-parameter. In each experiment, we employed 
five different machine learning algorithms: Random Forest 
(RF), Decision Trees (DT), Logistic Regression (LR), 
XGBoost, and Support Vector Classifier (SVC). 

The summary of results of each experiment is given in 
Table 3-8. 
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TABLE III. FULL FEATURE SET WITH DEFAULT 

HYPERPARAMETERS 

Algorithm Accuracy Precision Recall F1 

RF 0.9473 0.9411 0.9411 0.9411 

DT 0.9736 1.0 0.9411 0.9696 

LR 0.9210 0.9375 0.8823 0.9090 

XGBoost 0.9736 1.0 0.9411 0.9696 

SVC 0.8947 0.8823 0.8823 0.8823 

TABLE IV. FULL FEATURE SET WITH HYPERPARAMETER 

OPTIMIZATION 

Algorithm Accuracy Precision Recall F1 

RF 0.9736 1.0 0.9411 0.9696 

DT 0.9473 0.9411 0.9411 0.9411 

LR 0.9473 0.9411 0.9411 0.9411 

XGBoost 0.9736 1.0 0.9411 0.9696 

SVC 0.9473 0.9411 0.9411 0.9411 

TABLE V. FULL FEATURE SET WITH HYPERPARAMETER 

OPTIMIZATION AND BORDERLINE SMOTE 

Algorithm Accuracy Precision Recall F1 

RF 0.9736 1.0 0.9411 0.9696 

DT 0.9210 0.8888 0.9411 0.9142 

LR 0.9210 0.9375 0.8823 0.9090 

XGBoost 0.9736 1.0 0.9411 0.9696 

SVC 0.8684 0.8333 0.8823 0.8571 

TABLE VI. SELECTED FEATURES WITH DEFAULT 

HYPERPARAMETERS 

Algorithm Accuracy Precision Recall F1 

RF 0.9473 0.9411 0.9411 0.9411 

DT 0.8684 0.8 0.9411 0.8648 

LR 0.9210 0.85 1.0 0.9189 

XGBoost 0.9210 0.8888 0.9411 0.9142 

SVC 0.8947 0.8421 0.9411 0.8888 

TABLE VII. SELECTED FEATURES WITH 

HYPERPARAMETER OPTIMIZATION 

Algorithm Accuracy Precision Recall F1 

RF 0.9736 1.0 0.9411 0.9696 

DT 0.8947 0.8421 0.9411 0.8888 

LR 0.9210 0.85 1.0 0.9189 

XGBoost 0.9736 1.0 0.9411 0.9696 

SVC 0.9210 0.85 1.0 0.9189 

TABLE VIII. SELECTED FEATURES WITH 

HYPERPARAMETER OPTIMIZATION AND BORDERLINE 

SMOTE 

Algorithm Accuracy Precision Recall F1 

RF 0.9473 0.9411 0.9411 0.9411 

DT 0.9473 0.9411 0.9411 0.9411 

LR 0.9210 0.85 1.0 0.9189 

XGBoost 0.9736 1.0 0.9411 0.9696 

SVC 0.9210 0.85 1.0 0.9189 

B. Model Evaluation 

a) Experiment A(1): Full Feature Set with default 
hyperparameters 

Table 3 shows the performance of various algorithms 
with the full feature set and default hyperparameters. The 
Decision Tree and XGBoost algorithms showed high 
performance, while the Logistic Regression and Support 
Vector Classifier algorithms showed lower performance. 
This indicates that without hyperparameter optimization, 
some algorithms may not perform as well as others. 

b) Experiment A(2): Full Feature Set with 
Hyperparameter Optimization 

With hyperparameter optimization, the performance of all 
algorithms improved as shown in Table 4. The Random 
Forest and XGBoost algorithms maintained their high 
performance, while the Decision Tree and Support Vector 
Classifier algorithms showed significant improvement, 
particularly in terms of accuracy and F1-score. 

c) Experiment A (3) : Full Feature Set with 
hyperparameter Optimization and Borderline SMOTE 

As shown in Table 5, Random Forest and XGBoost 
algorithms achieved the highest accuracy and F1-score, 
indicating excellent overall performance. The Support Vector 
Classifier, on the other hand, had the lowest scores among the 
algorithms, suggesting it may not be the best choice for this 
dataset when using the full feature set. 

d) Experiment B (1): Selected Features with default 
hyperparameters 

The algorithms were run with default hyperparameters, 
and a selected subset of features extracted using mutual 
information. The Random Forest algorithm again performed 
well in accuracy terms. However, the Decision Tree 
algorithm showed a decrease in performance compared to the 
full feature set, particularly in terms of precision and F1-score 
displayed in Table 6. 

e) Experiment B (2) : Selected Features with 
Hyperparameter Optimization 

Optimization of the hyperparameters enhanced the 
performance of all algorithms as observed in Table 7. While 
the Decision Tree and Support Vector Classifier algorithms 
significantly improved, notably the accuracy and F1-score, 
the Random Forest and XGBoost algorithms kept up their 
strong performance. 

f) Experiment B (3) : Selected Features with 
Hyperparameter Optimization and Borderline SMOTE 

It can be inferred in Table 8 that with both hyperparameter 
optimization and Borderline SMOTE, the XGBoost 
algorithm achieved the highest scores across all metrics, 
followed closely by the Random Forest algorithm. The 
Support Vector Classifier, while improved, still lagged 
behind other algorithms. 

V. RESULTS AND DISSUSSION 

In Experiment A, where the full feature set was used with 
hyperparameter optimization and Borderline SMOTE, the 
Random Forest and XGBoost model demonstrated the 
highest accuracy and F1-score. This suggests that these 
models were able to effectively classify the survival 
outcomes of pediatric BMT patients using the full feature set. 
The Support Vector Classifier, on the other hand, performed 
poorly in comparison, indicating that it may not be the best 
choice for this dataset when using the full feature set. In 
Experiment B, where selected features were used, the 
Random Forest algorithm continued to perform well in terms 
of accuracy. However, the Decision Tree algorithm showed a 
decrease in performance compared to the full feature set, 
particularly F1-score and precision. This suggests that the 
selected features may not have included some important 
variables that the Decision Tree algorithm could use to 
improve its predictions. The introduction of hyperparameter 
optimization in Experiment B improved the performance of 
all algorithms. This indicates that tuning the parameters of the 
models can significantly enhance their predictive capabilities.  
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The use of Borderline SMOTE in Experiment B did not 
significantly change the performance of the algorithms. 
However, it did improve the Decision Tree algorithm results, 
suggesting that the technique may be beneficial for certain 
models. 

Finally, in Experiment B with both hyperparameter 
optimization and Borderline SMOTE, the XGBoost 
algorithm achieved the highest accuracy of 97.36% 
outperforming previous accuracy score of 95.23% [13] . This 
suggests that the combination of either full feature set or 
selected features with hyperparameter optimization and 
Borderline SMOTE can lead to highly accurate predictions of 
survival outcomes in pediatric BMT patients. 

VI. FUTURE WORK 

The potential to save lives and enhance the quality of life 
for pediatric BMT patients is immense, and the predictive 
models developed in this study represent a significant step 
forward. However, we must not rest on our laurels. The future 
of this research holds exciting possibilities that could 
revolutionize the way we predict survival outcomes in 
pediatric BMT patients. We envision a future where our 
models are enriched with a broader spectrum of data, 
encompassing detailed medical histories, genetic 
information, and comprehensive post-transplantation care 
details. This wealth of information could unlock new insights 
and enhance the predictive power of our models. We also see 
great promise in exploring alternative feature selection 
methods and oversampling techniques. By doing so, we could 
discover hidden patterns and correlations in the data, 
directing more precise predictions. The use of more complex 
models, such as artificial neural networks, could further 
enhance our ability to predict survival outcomes by capturing 
intricate non-linear relations in the data. By employing 
ensemble methods, we can harness the strengths of multiple 
models, leading to more robust and accurate predictions. We 
plan to validate our models using a variety of cross-validation 
techniques, external datasets, and temporal splits. This 
rigorous validation process will affirm that our models are not 
just theoretically comprehensive, but also practically 
applicable in varied real-world scenarios.  
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